Machine Learning: Plot ROC and PR Curve for multi-classes classification

Widnu
4 min readJun 17, 2020

--

Situation: We want to plot the curves.

Why: Because the accuracy score is too high and the confusion matrix shows some bias.

Steps:

  1. Import libraries.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, precision_recall_curve, confusion_matrix, roc_curve, auc, log_loss
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import OneHotEncoder
import seaborn as sn
from sklearn.svm import SVC
from xgboost import XGBClassifier

2. Create 3 functions: plot_roc_curve, plot_precision_recall_curve, and plot_confusion_matrix.

Inside the functions to plot ROC and PR curves, We use OneHotEncoder and OneVsRestClassifier.

def plot_roc_curve(X, y, _classifier, caller):
# keep the algorithm's name to be written down into the graph
algor_name = type(_classifier).__name__

# put y into multiple columns for OneVsRestClassifier
onehotencoder = OneHotEncoder()
y_hat = onehotencoder.fit_transform(y.reshape(-1,1)).toarray()
n_classes = y_hat.shape[1]
# split train/test set
X_train, X_test, y_train, y_test = train_test_split(X, y_hat, test_size = 0.3, random_state = 5)
# For each classifier, the class is fitted against all the other classes
clf_ovr = OneVsRestClassifier(_classifier)
clf_ovr.fit(X_train, y_train)
y_proba = clf_ovr.predict_proba(X_test)

# Compute ROC curve and ROC area for each class
fig = plt.figure()
plt.style.use('default')
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_proba[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
plt.plot(fpr[i], tpr[i], lw=2, label='ROC curve of class {0} (area = {1:0.2f})'.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("false positive rate")
plt.ylabel("true positive rate")
plt.legend(loc="lower right", prop={'size': 10})
plt.title('ROC to multi-class: ' + caller)
plt.suptitle(algor_name, fontsize=16)
fig.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()
def plot_precision_recall_curve(X, y, _classifier, caller):
# keep the algorithm's name to be written down into the graph
algor_name = type(_classifier).__name__

# put y into multiple columns for OneVsRestClassifier
onehotencoder = OneHotEncoder()
y_hat = onehotencoder.fit_transform(y.reshape(-1,1)).toarray()
n_classes = y_hat.shape[1]
# split train/test set
X_train, X_test, y_train, y_test = train_test_split(X, y_hat, test_size = 0.3, random_state = 5)
# For each classifier, the class is fitted against all the other classes
clf_ovr = OneVsRestClassifier(_classifier)
clf_ovr.fit(X_train, y_train)
y_proba = clf_ovr.predict_proba(X_test)

# Compute ROC curve and ROC area for each class
fig = plt.figure()
plt.style.use('default')
precision = dict()
recall = dict()
for i in range(n_classes):
precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_proba[:, i])
plt.plot(recall[i], precision[i], lw=2, label='PR Curve of class {}'.format(i))

plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("recall")
plt.ylabel("precision")
plt.legend(loc="lower right", prop={'size': 10})
plt.title('Precision-Recall to multi-class: ' + caller)
plt.suptitle(algor_name, fontsize=16)
fig.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()
def plot_confusion_matrix(cfm, y_test, caller, algor_name):
# plot confusion_matrix
df_cm = pd.DataFrame(cfm, columns=np.unique(y_test), index = np.unique(y_test))
df_cm.index.name = 'Actual'
df_cm.columns.name = 'Predicted'


fig = plt.figure()
plt.title('Confusion Matrix: ' + caller, fontsize=14)
plt.suptitle(algor_name, fontsize=16)
plt.style.use('default')
fig.tight_layout(rect=[0, 0.03, 1, 0.95])
sn.set(font_scale=1.4)
sn.heatmap(df_cm, cmap="Blues", annot=True, fmt='g', annot_kws={"size": 10})
plt.show()

3. Load Iris data set.

iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
y = iris.target

4. Split train and test parts.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5)

5. Train the LogisticRegression model.

clf = LogisticRegression(max_iter=50, solver = 'lbfgs')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

6. Print scores.

algor_name = type(clf).__name__
caller = 'Iris dataset'
rpt = classification_report(y_test, y_pred)
cfm = confusion_matrix(y_pred, y_test)
print("accuracy: {}".format(round(accuracy_score(y_test, y_pred), 3)))
print("log loss: {}".format(round(log_loss(y_test, y_proba), 3)))
print(rpt)
print(cfm)

7. Plot graphs.

try:
plot_confusion_matrix(cfm, y_test, caller, algor_name)
except ValueError:
print("Error: cannot plot the confusion matrix.")
# Need more research to plot the ROC and PR curve for XGBoost and SVC
if not isinstance(clf, (XGBClassifier, SVC)):
try:
plot_roc_curve(X, y, clf, caller)
except ValueError:
print("Error: cannot plot the ROC Curve.")

try:
plot_precision_recall_curve(X, y, clf, caller)
except ValueError:
print("Error: cannot plot the PR Curve.")

8. We can see from the graphs that the prediction is pretty bad.

Please research more about how the ROC and PR graphs should be.

--

--

No responses yet